Container Orchestration for Dispersed Computing

Pradipta Ghosh
University of Southern California
Los Angeles, California
pradiptg@usc.edu

ABSTRACT

In the era of Internet of Things, there is an increasing demand
for networked computing to support the requirements of time-
constrained, compute-intensive distributed applications. We
present a container orchestration architecture for dispersed
computing, and its implementation in an open source software
called Jupiter. The system automates the distribution of compu-
tational tasks for complex computational applications described
as an Directed Acyclic Graph (DAG) to efficiently distribute the
tasks among a set of networked compute nodes and orchestrates
the execution of the DAG thereafter. This Kubernetes based
container-orchestration system supports both centralized and
decentralized scheduling algorithms for optimally mapping the
tasks based on information from a range of profilers: network
profilers, resource profilers, and execution time profilers.

CCS CONCEPTS

« Software and its engineering — Virtual machines; - Comput-
ing methodologies — Self-organization; « Computer systems
organization — Cloud computing.

KEYWORDS

Container Orchestration, Kubernetes, Dispersed Computing

ACM Reference Format:

Pradipta Ghosh, Quynh Nguyen, and Bhaskar Krishnamachari. 2019. Con-
tainer Orchestration for Dispersed Computing. In 5th International Work-
shop on Container Technologies and Container Clouds (WOC ’19), Decem-
ber 9-13, 2019, Davis, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3366615.3368354

1 INTRODUCTION

Virtualization is a key component of modern data centers to support
a large number of simultaneous user, multiple operating systems,
and applications on a single computer or server while maintaining
quality of service, privacy and security guarantee [15]. The key

This material is based upon work supported by Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001117C0053. Any views, opinions, and/or
findings expressed are those of the author(s) and should not be interpreted as represent-
ing the official views or policies of the Department of Defense or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WOC 19, December 9-13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7033-2/19/12...$15.00
https://doi.org/10.1145/3366615.3368354

Quynh Nguyen
University of Southern California
Los Angeles, California
quynhngu@usc.edu

Bhaskar Krishnamachari
University of Southern California
Los Angeles, California
bkrishna@usc.edu

enabling technology is Virtual Machine which emulates a real com-
puter system to the users with multiple of them running in the
same physical machine. However, to support such user-to-user sep-
aration, virtual machines are ‘bulky’ i.e., one can not run more than
3-4 simultaneous virtual machine in a standard server. This often
results in under-utilization of resources. Besides, virtual machines
restrict access to physical interfaces and thus restricts the spectrum
of supported applications.

What is a Container? Over the past decade, there has been a dra-
matic shift in virtualization technology with the introduction of
Containers such as Docker containers [8]. A container [1] is “a stan-
dard unit of software that packages up code and all its dependencies
so the application runs quickly and reliably from one computing en-
vironment to another. A container image is a lightweight, standalone,
executable package of software that includes everything needed to
run an application: code, runtime, system tools, system libraries, and
settings.” Therefore the operation principle of containers are dif-
ferent than Virtual machine. Each container is considered to the
physical machine as a single process with access to the physical
interfaces. Due to the lightweight nature of this virtualization, one
can deploy thousands of containers in one server while keeping
app-to-app separation.

Why are Containers important for Internet of Things (IoT)?
The ubiquitous presence of economical low-compute-power edge
devices such as cell phones, car dashboard, and drones has opened
up the domain of edge or fog computing [7]. Edge Computing fo-
cuses on exploiting all the devices near end users to comply with the
skyrocketing demand for computationally intensive applications
such as image processing and voice recognition towards autonomy
and personalized assistance. Most of such IoT devices lack the re-
source to accommodate virtual machines (VM). Thus, containers
are the default choice of virtualization to support multiple users.

Dispersed Computing. Interestingly, a significant subset of
these cutting-edge time-constrained, compute-intensive distributed
applications rely on an orderly processing of the streaming data
which can be represented in form of a Directed Acyclic Graph (DAG).
This brings us to the newly emerging field of Dispersed Computing
that focuses on a joint optimization of computation and communi-
cation costs to distribute the execution of a Directed Acyclic Graph
(DAG) based task graph among a network of compute nodes that
may be geographically distributed. Dispersed Computing can be
thought of as a mixed architecture between Edge Computing and
Cloud Computing where the network of compute nodes might
contain either or both edge processors and cloud-based processors.

Objective. The main question is how can we deploy and manage con-
tainers efficiently in a dispersed computing environment? Researchers
have developed a wide range of container orchestration tools such

https://doi.org/10.1145/3366615.3368354
https://doi.org/10.1145/3366615.3368354
https://doi.org/10.1145/3366615.3368354

WOC ’19, December 9-13, 2019, Davis, CA, USA

as Kubernetes [6], Mesos [9], Docker Swarm [5] for normal task
graphs in the context of clouds. To our knowledge, none of these
tools has provisions for containerized pipelined processing of DAG-
based task graphs for dispersed computing. In the grid computing
domain [3], there exist some frameworks for mapping tasks on geo-
graphically distributed clusters such as Pegasus [4] and Falcon [11].
However, they assume a static and relatively well-characterized
network with simple applications for centralized task mapping. In
contrast, Dispersed Computing deals with networks of compute
devices where the communication links are not well-characterized
and dynamic.

Figure 1: Illustration of the DAG based Networked Computing
problem: the black lines denote communication links, the red
lines denote the mapping, and the blue lines denote data flows.

Our Contribution. We present a new system architecture for con-
tainerized orchestration of DAG-based dispersed computing ap-
plication task graphs, and its open-source implementation in a
software system called Jupiter. Jupiter is built on top of the well-
known container orchestration tool called Kubernetes [6]. Carefully
leveraging the available architecture of Kubernetes, we introduce
three new types of DAG orchestration containers to run on each
device to support pipelined processing: Profiler Container, Mapper
Container, and Execution Container. The Profiler Containers gener-
ates the necessary statistics required by a DAG scheduling/mapping
algorithm such as the well known Heterogeneous Earliest Finish
Time (HEFT) [14]. The Mapper Container contains the schedul-
ing/mapping algorithm code and performs the mapping based on
the profiler data. Lastly, the Execution Container contains the appli-
cation code files and oversees the implementation of the mapping
algorithm outcome. We have deployed the Jupiter system on a large
cluster of more than 100 nodes in Digital Ocean to quantify the
performance and overhead associated with various components of
containerized dispersed computing (see §4).

2 PROBLEM DESCRIPTION AND KEY
OBJECTIVES

First, let us assume that we have a network of N heterogeneous
networked compute processors (NCPs) that are geographically dis-
tributed. Let’s say we are interested in deploying an application-
DAG that consists of T tasks where the input sources are distributed
geographically. Now, the goal is to properly map the tasks from
the application DAG to the NCPs such that the Makespan of the

Pradipta Ghosh, Quynh Nguyen, and Bhaskar Krishnamachari

application-DAG is minimized!. The Makespan in this context
would depend on both the compute powers of the NCPs chosen as
well as the delays on the network paths between the NCPs. For an
illustration, refer to Figure 1 where the application DAG consists
of 6 tasks with two geographically separated input sources.

Scheduling of DAG. The scheduling goal is to optimally map
the tasks on the geographically distributed NCPs such that the
output can be made available the fastest. To support scheduling of
a task graph in the form of a DAG, i.e, pipelined executions, we
need special types of scheduler that are not available in most well-
known container orchestrators such as Kubernetes. However, in
this paper we are not focused on developing a scheduling algorithm
rather to build a system to support such algorithms. Such mapping
algorithms will require a wide range of statistics about the devices
such as end to end file transfer latencies which are not readily
available in existing systems.

Execution of DAG based Pipelined Task. Dispersed comput-
ing task graphs typically follow a DAG task graph with pipeline
execution i.e., the output stream from each task feeds the input
of the subsequent task in the DAG. In current context, it is the
job of the container developer to put the right code to support
such pipelined execution. Thus, a generic application independent
system is missing in current container orchestration tools.

3 PROPOSED SOLUTION
3.1 Background

Before detailing our software architecture, let us provide a brief
summary of Containers and the Kubernetes architecture as our
proposed architecture rely heavily on them.

Containers, Dockers. The most common norm in cloud comput-
ing today is to use Virtual Machines (VMs) to support the demand of
users while keeping necessary isolation between the user processes
running on the same physical machine. Due to high overhead, the
number of concurrent VMs on a Physical machine is restricted to
a very small number such as 3-5 for a standard Quadcore desktop
with 12GB RAM. Moreover, due to the lack of direct access to the
Hardware, the functionality of VMs are restricted. Containers, on
the other hand, are the most cutting-edge convention for processor
virtualization that provides isolations similar to traditional VMs
but with much less computing power requirements. Unlike VMs,
a container image is a lightweight standalone executable that in-
cludes all the requires modules, libraries, codes, and tools to run it.
A container directly runs on the guest OS and is considered as a
single process by the guest OS. All the processes inside a container
are viewed as a sub-process of the main process. Because of this
low computation requirement, one can run hundreds of containers
on a physical machine. The concept of a container has been around
for a while [2] but became particularly popular with the advent of
a specific type of containers called Docker containers [8] in 2014.

Kubernetes. Like Virtual Machines, Containers also need proper
orchestration and management in a Cloud Data Center. While there
exist different alternatives, Kubernetes [6], originally designed by

!Other objectives are also possible, but we will restrict ourselves to makespan mini-
mization for ease of exposition.

Container Orchestration for Dispersed Computing

O

ﬁ node processes

Kubernetes cluster

(a) (b)
Figure 2: (a) Kubernetes Cluster Layout (Taken from https://
kubernetes.io/), (b) Each Kubernetes Node with DAG Orchesta-
tion

Execution
Container
Profiler Mapper
Container Container

Kubelet

Google, now maintained by the Cloud Native Computing Founda-
tion, is one of the most popular and widely accepted ones.

Any Kubernetes Cluster follows a well-defined layout (presented
in Figure 2a) with two main types of entities: Kubernetes Master
and Kubernetes Nodes.

Kubernetes Master. Kubernetes Master is the management node
of the cluster which oversees proper functioning of every nodes
in the cluster. The Master is in charge of coordinating all activities
including applications scheduling, scaling, and supporting fault
tolerances.

Kubernetes Nodes. Kubernetes Nodes are the worker nodes in
the cluster which can be physical machine or a Virtual Machine
(VM). Each Kubernetes Node is manages by the Kubernetes Master
by running some management related containers in each machine
called Kubelet.

To deploy a container, the user needs to issue the proper com-
mand at the Kubernetes Master that will decide where to spawn the
container, download/build the container on the desired Kubernetes
Node, and finally queue the spawning of the container. Note that
queuing a spawn does not guarantee the spawning. Each Kuber-
netes Node has its own queue and resources. If enough resource is
available, it will take out an entry from the queue and spawn the
container. A detailed overview of Kuberenetes can be found in the
official website https://kubernetes.io/.

3.2 DAG Orchestration Architecture

The original Kubernetes does not support automatic scheduling
or execution of a DAG based task graph as required for dispersed
computing. To this end, we have developed a new architecture that
builds on top of Kubernetes (Figure 2b). To have a minimalistic
design of the architecture, we have developed three types of spe-
cialized container that can fulfil our goal once each device runs a
copy of them. To Kubernetes these containers are standard con-
tainers that can be deployed from the Kubernetes master using
standard ‘kubect]’ command or the Kubernetes python APL This
modular design also allows us to easily port this architecture to
other orchestration tools like Mesos or Docker Swarm (We have
not done this). Next, we detail each of these specialized containers.

Profiler Containers. To schedule DAG on a set of networked
compute nodes (NCP), we mainly need two basic information: (1)
resource availability in each node, and (2) inter node file transfer

WOC 19, December 9-13, 2019, Davis, CA, USA

latency. While resource availability is available from Kubelets run-
ning on each node, file transfer latency information is not readily
available.

Concept: To gather the necessary statistics, we have developed
a special type of Containers called Profiler Containers, that will
periodically probe the links between the nodes to generate the nec-
essary statistics. We use Kubernetes to run a copy of this container
is each node. We take advantage of the fact that the NICs are not
virtualized in Containers i.e., each container can access the real
network hardware.

Function Logic: Each profiler container periodically sends a
randomly generated file with known file size to each of the other
NCPs via a well-known file transfer protocol such as Secure Copy
(SCP). The file transfer times are recorded and curve-fit using a
quadratic regression with respect to the file-size () as: [= p+q- f+
r - f2 where p, g, r are empirically determined constants. We opted
for a quadratic fit as it is the empirical best fit towards approximate
file transfer time for varying file sizes [10]. For completeness, we
have also included a compute resource profiler inside the profiler
container that periodically checks the processor usage. Moreover,
to have a Kubernetes like architecture, we kept a notion of home
profiler and worker profiler where ‘home’ refers to a master profiler
that can coordinate (if needed) the profiling tasks on individual
‘worker’ NCPs.

Networking Requirement: One key requirement for such pro-
filer containers is that each container needs to be uniquely address-
able as if they represent the physical / virtual node. We leverage
the service abstaction available in Kubernetes to this end where
each profiler container is assigned an individual service and thus
an unique IP.

API Requirement: To utilize the profiler data for scheduling
purpose, one must be able to query the profilers to get the latest
statistics. To this end, we have associated a Flask server with unique
Port Number (referred as ‘PROFILER-FLASK-PORT’) and associated
a Function call local_profiler_stat. Any device/container in the net-
work can now directly query individual profiler containers to get
its statistics.

Mapping Containers. Since the scheduling of DAG based task
graph require us to follow different logic than the existing Kuber-
netes scheduling algorithm, similar to the profiler containers, we
have developed a special type of container for scheduling called
“Mapping Containers”.

Concept: A Mapping Container can contain one/multiple sched-
uling algorithms based on the requirements. For a centralized sched-
uling algorithm there will be only one instance of Mapping Con-
tainer in the Cluster. However for a distributed scheduling algo-
rithm, each NCP will run a copy of the Mapping Container. The
code inside each Mapping Container first uses the Flask servers of
the profiler containers to gather necessary stats. This information
is used by the scheduling logic (such as the well-known HEFT algo-
rithm [14]) to determine the mapping of tasks in the DAG to each
NCP.

Function Logic: Each mapping container can communicate with
each of the profiler as well as each of the other mapping container.

https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/

WOC ’19, December 9-13, 2019, Davis, CA, USA

This is important for distributed scheduling. For centralized sched-
uling, the mapping container just query all the profiler containers to
gather information about all nodes and then make more informed
decision. For distributed scheduling, each mapping container only
contacts the profiler container located in the same NCP. Once a
mapping is available, it contact the respective execution containers
(detailed below) to start the task. Over time if the mapping changes,
it again communicates with the necessary execution containers to
start/stop tasks. Similar to profilers, we have kept a notion of home
mapping container and worker mapping container for distributed
scheduling where ‘home’ refers to a master mapping container that
can coordinate the mapping tasks on individual ‘worker’ NCPs.

Networking Requirement: As with profiler containers, each
mapping containers are assigned unique IP address by wrapping
them inside Kubernetes service abstractions. The IP address of all
the services are fed to each container at boot time.

API Requirement: For lazy retrival of the mapping data as well
as inter container communication in distributed scheduling, each
mapping containter is also associated with a Flask server with
unique Port Number (referred as ‘MAPPER-FLASK-PORT’).

Execution Containers The last type of specialized containers
required for DAG processing is called “Execution Containter”.

Concept: In order to run a DAG task-graph on a set of NCP, the
execution containers are required to perform two main tasks: (1) run
the scheduled/mapped task on the selected node and (2) transfer the
output of the executed tasks to the input of the next task of the DAG
which may be running in a separate node. Each execution container
are supplied with all the task files (e.g., a separate python script for
each task). We have two different models for Execution Container
deployment. We can run a copy of the execution container in each
NCP. With this model, upon receiving a mapping from a mapping
container, a background process running on the execution container
starts a new thread with the respective task code. The second models
is to deploy execution container only on the devices where a task
has been mapped and re-deploy everything when a new mapping
is available. The former model performs better for a very dynamic
environment whereas the later is optimized for a cluster with a
relatively static load. In this paper, we present only the second
model for the analysis of the proposed system.

Function Logic: Each execution container has three main com-
ponents: (a) a compute module that load the relevant task codes
and starts a new thread once a mapping is available, (b) a moni-
tor module that keeps track on input and output of the tasks, and
(c) a transfer module which transfer the output of the task, once
available, to the execution container of the next task in the DAG.
Again, we have kept a notion of home and worker in Execution
Containers where ‘home’ refers to a master Execution Containers
that can coordinate the bootstrapping of the task execution.

Networking Requirement: As with profiler containers and
mapping containers, each execution containers is assigned a
unique IP address by wrapping them inside Kubernetes service
abstractions. The IP address of all the services is fed to each
container at boot time. This information is used both by the

Pradipta Ghosh, Quynh Nguyen, and Bhaskar Krishnamachari

mapping containers to push the mapping information and the
transfer module of the execution container to transfer the outputs.

API Requirement: For pushing the mapping information, each
execution container is also associated with a Flask server with
unique Port Number (referred as EXECUTION-FLASK-PORT’).

3.3 The Jupiter System

In this section, we discuss briefly our open source software imple-
mentation of a framework to support DAG execution with contain-
ers on Kubernets that we refer to as the Jupiter System (available
online at https://github.com/ANRGUSC/Jupiter). The Jupiter sys-
tem consists of three main modules: Profiler, Task Mapper, and the
CIRCE dispatcher which aligns with the three types of containers
introduced earlier. The inputs to the Jupiter consist of the Directed
Acyclic Task Graph (DAG) information, the task files, and the infor-
mation (such as IP or node name) about available compute nodes.

Profiler. As explained before, we need to have some basic profil-
ing information about the compute resource availability, runtime
of tasks, and end-to-end file transfer latency. To this end Jupiter
consists of two main different types of profilers (embedded in the
Profiler Containers): (1) Network Profiler that maintains statistics
about the bandwidth and end-to-end delay between the available
NCPs, (2) Resource Profiler that profiles the resource availability
of each NCP in terms of CPU and Memory availability. For concise-
ness, we use the term “DRUPE” to refer to the combined network and
resource profiler.

In addition, we have a provision for a third type of profiler called
the Execution profiler that profiles the execution time of each task
of the DAG in each of the available NCPs. For optimal allocation
of tasks, some task mappers such as HEFT[13] might need such
information about the execution times of the individual tasks for
each of the NCPs. HEFT like task mappers do not use the raw CPU
usage statistics available from the Resource Profilers. Some sched-
uler require some base statistics about the execution time on each
of the NCPs even before the tasks are actually mapped. However,
the complete execution time information is available only after the
tasks are executed on each of the available NCPs. To deal with this,
we introduce a fourth type of container called ‘Exec-Profiler Con-
tainer’ which are run on each NCP at the very beginning and torn
down once a base statistics is available. An ‘Exec-Profiler Container’
runs the entire DAG with some sample input files and collects the
statistics. The second fold of execution profiler data is available
from the execution containers. Each execution containers includes
a runtime-execution-profiler code which gathers timestamp infor-
mation for all the tasks executed on a NCP over time. Available
runtime statistics include Enter time, Execute time, Finish time,
Elapse time, Duration time and Waiting time.

The information from the profilers and the input files are fed
to the task mapper module which outputs a mapping of the DAG
tasks into the available NCPs based on the mapping algorithm used.

Task Scheduler/Mapper. The job of the task scheduler on Jupiter
architecture (contained inside the Mapping Container) is to properly
map individual tasks from a DAG to the compute nodes such that
the Makespan of the DAG is minimized. We define the ‘Makespan’

https://github.com/ANRGUSC/Jupiter

Container Orchestration for Dispersed Computing

Application
DAG Information

Application
Task Files

) Jupiter
Execution H
' S J
V2
Resource
Profiler

'
H

V

'

H

Task Mapper: (N
Centralized HEFT CIRCE H
or Dispatcher .
Decentralized WAVE L o
—

A J '

H — '
| H
V H
H Network H
' Profiler i
H '

The Jupiter System &

Available Compute
Node Information

Figure 3: The Jupiter Architecture

o e

of the DAG as the time required to generate an output via executing
the entire task DAG on one set of input files or input chuck of data.
In the current Jupiter system, we have provision for two different
classes of task mappers: (1) Centralized HEFT[13] and (2) Decen-
tralized WAVE [12], with a modular design that enables researchers
to build and test out other task mappers. A Jupiter configuration
file is used for choosing between these different options of task
mappers as well as setting a range of parameters to customize for
application-specific requirements. To provide more context on the
mapper algorithm as well as provide some statistics on the Jupiter
System, we briefly describe the HEFT algorithm below.

Heterogeneous Earliest Finish Time (HEFT): Heterogeneous
Earliest Finish Time (HEFT) ([13, 14]) is a well-known heuristic in
grid/cloud computing for mapping a directed acyclic task graph
into a network of heterogeneous compute nodes that also accounts
for the communication times between the nodes. HEFT operates in
a sequence of two phases: ranking and prioritization, and processor
selection. In the first phase, i.e., ranking or prioritization phase,
HEFT defines a priority of each task t; as follows:

ranky(t;) = w; + max (cij + ranky(tj)) (1)

tjesucc(t;)

where the subscript “u" refers to “upwards rank" which is defined as
the expected distance of the task from the end of the computation,
t; refers to task i, ; is the average computation cost of the task i
among all the compute nodes, ¢; ; refers to the average communi-
cation cost of the data communicated between task ¢; and ¢; for all
pairs of compute nodes, and succ(t;) refers to the set of dependent
tasks in the DAG.

In the second phase i.e., the processor selection phase, HEFT as-
signs the tasks to the NCPs based on the ranks calculated in the
ranking or prioritization phase. In each iteration of the task assign-
ment, HEFT picks the task which has the highest priority and has
all the dependent tasks already mapped. Next, HEFT schedules
the task on an NCP that will minimize the earliest finish time of
that task. This process continues until all the tasks are mapped.
Finally, HEFT outputs the overall task to NCP mapping along with
a timeline to follow for the executions.

Task Execution/Dispatch. The generated task-to-NCP-mapping
is used by the CIRCE dispatcher module in our Jupiter system to
dispatch the tasks on respective NCPs, monitor the input-output of
each task to administer the respective task execution, and transfer
the data/files between consecutive tasks of the DAG. Thus, CIRCE
is more-or-less the system inside each of the execution container.
We have provision for both lazy retrieval of map as well as active

WOC 19, December 9-13, 2019, Davis, CA, USA

retrieval. Lazy retrieval implies we only change the task-to-NCP
mapping if there is a dramatic change in the system and we rede-
ploy all the tasks according to the new mapping. Active retrieval
implies that a notion of ‘task controller’ periodically checks if there
exists a better alternative for each task in the DAG. If any, the ‘task
controller’ forces CIRCE to switch the task mapping immediately.

In Figure 3, we illustrate the software architecture of the pro-
posed Jupiter system along with the data flow between different
modules.

Automating Deployment. To automate the DAG deployment on
Kubernetes, we have written a set of scripts to assist generating
the Docker files for all the modules of the system based on specific
applications and user configuration choices, to build the correspond-
ing Docker images, to push those images to the Dockerhub, and to
deploy and tear down the whole system in one shot on a cluster.
The automatic scripts take advantage of the Python client for the
Kubernetes APL

We also developed and open-sourced a set of scripts to auto-
matically install the environment requirements for all the nodes
in the cluster (Digital Ocean in our testing settings) including Ku-
bernetes deployment for the master and the children nodes with
various cluster parameters like number of nodes, number of CPU
cores, memory size, limit of network and CPU resources by the
Kubernetes cluster, and stress test simulation images for the NCPs.

Developing Applications. The current Jupiter system has been
tested with applications developed in C and Python language which
are made opensource for illustration. In addition, we have generated
a set of standardized rules for writing applications with Jupiter. As
long as a application code follow the rules, it can be automatically
deployed with Jupiter. We also developed a dummy application
generator customized for the Jupiter Orchestrator. The dummy
application generator generates a DAG based on some input pa-
rameters such as depth (number of levels of the DAG), minimum
width and maximum width (number of tasks in each level of the
DAG), total number of tasks in the DAG, and communication to
computation ratio (for a preference between computation-intensive
application and Network - Delay focused application). The dummy
application generator also generates the corresponding dummy
application in Python with correct structure and syntax ready to
be tested on Jupiter.

Integration interface. The Jupiter system provides flexibility in
terms of network protocols (unicast or multicast capability, desti-
nation address or port, data transport method) and and resource
profiling through a modular interface. There is a necessity to pro-
vide a transparent interface and take advantage of the Kubernetes
services so that the users do not have to worry about the Kuber-
netes network policy and can be unaware of how the packet flow
is handled behind the scenes.

4 EXPERIMENTS

In this section, we analyze runtime statistics of different compo-
nents of the Jupiter system using the dummy application generator.
To this, we use the dummy application generator to generate dif-
ferent applications with varying number of tasks ranging from 30
to 200 tasks. For these experiments, we use the well-known HEFT

WOC ’19, December 9-13, 2019, Davis, CA, USA

Pradipta Ghosh, Quynh Nguyen, and Bhaskar Krishnamachari

Table 1: Latency (in seconds) over varying DAG size. N is number of nodes and M is number of tasks in the DAG.

Module | Time (sec) [N=106,M =30 [N=106,M =50 [N =106, M= 100 | N = 106, M = 150 | N = 106, M = 200
Deployment 85.69
DRUPE Teardown 221.36
Deployment 84.63 84.14 84.28 85.06 85.13
EP Execution 449.30 549.80 789.33 1090.81 1294.12
Teardown 183.71 205.77 211.24 229.51 318.24
Makespan 50.53 82.82 105.34 130.02 148.18
Deployment 1.09 0.96 0.96 1.14 1.02
HEFT Mapping 142.53 147.30 177.18 190.73 203.14
Mapping with EP 591.83 697.1 966.51 1281.54 1497.26
Teardown 2.37 2.18 2.03 2.11 1.81
CIRCE Deployment 46.09 58.96 124.90 158.89 232.19
Teardown 22.72 42.10 73.58 115.21 206.29

algorithm for task scheduling/mapping and assume relatively static
load in the cluster to deploy execution container only on the NCPs
with a task mapping. All the experiments are performed on a cluster
of 106 compute nodes on the cloud provider Digital Ocean. Each
of the Kubernetes node has 8GB RAM and 160 GB of disk space
available and is based on any of the 8 available geographic locations
across the world including San Francisco, Amsterdam, New York,
Singapore, London, Frankfurt, Bangalore and Toronto. The loca-
tions of the testbed were chosen following a uniform distribution.
The Kubernetes master node has a 32GB RAM and 640GB disk.
We collected the makespan statistics as well as deployment time,
running time and teardown time of the core modules (Network and
Resource Profiler (DRUPE), Execution Profiler (EP), HEFT mapping
and CIRCE Dispatcher). Summary of the results is presented in
Table 1.

Among the core modules, number of deployed Profiler Con-
tainers, Mapping Containers, and Exec-Profiler Containers only
depends on number of nodes in the system. Therefore, the deploy-
ment time and teardown time for respective Jupiter modules are
almost similar while in the case of the Dispatcher (CIRCE), number
of containers, deployment time and teardown time are proportional
to the DAG size and increase based on the DAG complexity. Note
that the deployment and teardown down heavily relies on the un-
derlying Kubernetes architecture and the time to download the
container files on each device as we simplify invoke python APIs
to start the containers.

HEFT mapping requires both network and resource profiling
from DRUPE and one-time execution information from Execution
Profilers. The system normally needs 15 minutes (this parameter
could be modified) to kickstart the activity of DRUPE, and we also
have to obtain the execution information from the execution pro-
filer, which is considerably large and grows proportionately while
we increase number of tasks in the DAG. Therefore, HEFT mapping
latency is the combination of running time of the execution profil-
ers and the mapping time necessary for performing the mapping
algorithm. Finally, makespan statistics of CIRCE with 10 sample
input files demonstrated that the larger number of task in the DAG,
the longer it takes to finish the application, which is to be expected.
Note that increasing the size of the input would also increase the
makespan accordingly, so that the overhead associated with net-
work profiling, execution profiling, and task mapping would all be
smaller in comparison.

5 CONCLUSION

In this paper, we presented a new container orchestration architec-
ture for dispersed computing and an open-source software imple-
mentation of the architecture called Jupiter that builds upon the
well-known Kubernetes orchestration tool. Through a set of experi-
ments, we demonstrate trends in different runtime statistics related
to the deployment of a task graph with Jupiter. While we have a
fully operating open-source system, it is still at an early state with
full potential yet to be unlocked. There are a lot of research question
unanswered including the development of an optimized distributed
mapping algorithm and a complete and methodical evaluation of
different components. We welcome the research community to
explore and extend the Jupiter tool.

REFERENCES

[1] 2019. Docker website - container definition. https://www.docker.com/resources/
what-container. (2019).

[2] Gaurav Banga, Peter Druschel, and Jeffrey C Mogul. 1999. Resource containers: A

new facility for resource management in server systems. In OSDI, Vol. 99. 45-58.

Fran Berman, Geoffrey Fox, Tony Hey, and Anthony JG Hey. 2003. Grid computing:

making the global infrastructure a reality. Vol. 2. John Wiley and sons.

[4] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, and
others. 2005. Pegasus: A framework for mapping complex scientific workflows
onto distributed systems. Scientific Programming 13, 3 (2005), 219-237.

[5] Docker Swarm. 2019. https://docs.docker.com/engine/swarm/. (2019).

[6] Kelsey Hightower, Brendan Burns, and Joe Beda. 2017. Kubernetes: Up and
Running Dive into the Future of Infrastructure. (2017).

[7] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.
2017. A survey on mobile edge computing: The communication perspective. IEEE
Communications Surveys & Tutorials 19, 4 (2017), 2322-2358.

[8] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[9] Mesos. 2019. http://mesos.apache.org/. (2019).

[10] Quynh Nguyen, Pradipta Ghosh, and Bhaskar Krishnamachari. 2018. End-to-End
Network Performance Monitoring for Dispersed Computing. In ICNC, 2018. IEEE,
707-711.

[11] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, and Mike Wilde. 2007.

Falkon: a Fast and Light-weight tasK executiON framework. In Proceedings of the

2007 ACM/IEEE conference on Supercomputing. ACM, 43.

Pranav Sakulkar, Pradipta Ghosh, B Krishnamachari, S Avestimehr, M Annavaram,

and others. 2018. Wave: A distributed scheduling framework for dispersed comput-

ing. Technical Report. Technical Report.

[13] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. 1999. Task scheduling algo-

rithms for heterogeneous processors. In IEEE Heterogeneous Computing Workshop

(HCW).

Haluk Topcuoglu, Salim Hariri, and Min-you Wu. 2002. Performance-effective and

low-complexity task scheduling for heterogeneous computing. IEEE transactions

on parallel and distributed systems 13, 3 (2002), 260-274.

Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: state-of-the-art

and research challenges. Journal of internet services and applications 1, 1 (2010),

7-18.

B3

[12

[14

[15

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

	Abstract
	1 Introduction
	2 Problem Description and Key Objectives
	3 Proposed Solution
	3.1 Background
	3.2 DAG Orchestration Architecture
	3.3 The Jupiter System

	4 Experiments
	5 Conclusion
	References

