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Abstract

Researchers have been interested in developing Al tools to
help students learn various mathematical subjects. One chal-
lenging set of tasks for school students is learning to solve
math word problems. We explore how recent advances in
natural language processing, specifically the rise of power-
ful transformer based models, can be applied to help math
learners with such problems. Concretely, we evaluate the use
of GPT-3, a 1.75B parameter transformer model recently re-
leased by OpenAl, for three related challenges pertaining to
math word problems corresponding to systems of two linear
equations. The three challenges are classifying word prob-
lems, extracting equations from word problems, and generat-
ing word problems. For the first challenge, we define a set of
problem classes and find that GPT-3 has generally very high
accuracy in classifying word problems (80%-100%), for all
but one of these classes. For the second challenge, we find
the accuracy for extracting equations improves with number
of examples provided to the model, ranging from an accu-
racy of 31% for zero-shot learning to about 69% using 3-shot
learning, which is further improved to a high value of 80%
with fine-tuning. For the third challenge, we find that GPT-3
is able to generate problems with accuracy ranging from 33%
to 93%, depending on the problem type.

Introduction

A math word problem (MWP) states the properties of enti-
ties and their relationships in natural language, along with
one or more quantitative questions posed in the end. Stu-
dents are typically required to convert the natural language
expression to one or more algebraic equation and solve them
to find the answers to the stated question(s). Word prob-
lems have a rich history in mathematics education, going
back three to four thousand years (Gerofsky 2004). MWP
figure prominently in nearly all school mathematics text-
books (Gerofsky 1996).

Verschaffel et al. note that “word problems are among the
most difficult kinds of problems that mathematics learners
encounter” (Verschaffel et al. 2020). This has led to many
decades of research in the mathematics education commu-
nity, focused on how to help students learn how to solve
such problems (Xin and Jitendra 1999; van Garderen 2008;
Gooding 2009; Verschaffel et al. 2020).
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It is known that one-on-one mentoring can have a signif-
icant positive impact on student learning but it is challeng-
ing to implement in chronically under-funded public schools
due to the high student-teacher ratios. This has motivated re-
search into the use of appropriate information technologies
including software systems to enable this kind of person-
alized learning (Xie et al. 2019). Personalized learning is
one of the 14 grand challenges identified by the National
Academy of Engineering (NAE 2008).

Because MWPs, by definition, require natural language
processing (NLP) and understanding, there has been sig-
nificant research attention given to the development of ap-
propriate NLP-based approaches to generating, solving and
explaining solutions to math word problems. NLP experts’
efforts in automatically solving math word problems trace
back to the 1960s (Bobrow 1964), and there has been a rich
literature in this area (Mukherjee and Garain 2008; Man-
dal and Naskar 2019; Patel, Bhattamishra, and Goyal 2021).
Nevertheless, developing a system that adapts to a wide
range of MWPs, particularly, one that gives good perfor-
mance on more complex problems, remains challenging.

One of the most promising developments in the field
of natural language processing has been the emergence of
Transformer deep learning models in 2017 (Vaswani et al.
2017). Equipped with a self-attention mechanism, a trans-
former is able to capture longer-range dependency within
a text to better understand the context for each word in a
given problem. Transformer models have superseded other
deep learning models such as recurrent neural networks,
as they are able to handle longer inputs, can be trained
faster, and because they show better results on a variety
of tasks. These tasks include text classification, translation,
question answering and even modeling human language pro-
cessing (Merkx and Frank 2020).

GPT-3 is the latest publicly available transformer released
by OpenAl, with an impressive few-shot learning capabil-
ity (Brown et al. 2020). This autoregressive transformer has
175 billion parameters and was pre-trained on over 400 bil-
lion high-quality tokens. Among a series of evaluation tasks
that OpenAl developers performed on GPT-3, the model
displayed noticeable capability in completing a) common
sense reasoning tasks, b) contextual comprehension tasks,
and c) mathematical reasoning tasks with additional training
(Brown et al. 2020; Cobbe et al. 2021). Altogether, it has the



potential to make significant contributions to a natural lan-
guage question-answering system. This motivates us to dive
deeper into its utility for math word problems.

In this work, we focus on exploring GPT-3’s performance
on various tasks pertaining to one type of MWP with an in-
termediate level of difficulty, namely, word problems that
can be expressed as a system of two linear equations in
two unknown variables. We made this choice for several
reasons. First, it helps to make the study somewhat more
well-defined, clearly scoped, and potentially easier to repli-
cate, given the vast number of different types of MWP that
are possible. Second, restricting the scope to this class of
problems allows us to write a simple verifier program to test
automatically whether a given output set of equations ex-
tracted by GPT-3 are correct. Third, this class of problems
is not too easy — for example, some consider the class of
simpler problems involving just one unknown variable to
be already “solved” (Patel, Bhattamishra, and Goyal 2021).
Fourth, at the same time, it is not an overly complicated or
esoteric class of problems, being routinely encountered by
middle school or high school students in introductory alge-
bra classes as well as on standardized tests such as the SAT.

We address three main questions in this project:

Q1 How good is GPT-3 at classifying problems into different
themes?

Q2 How good is GPT-3 at extracting a system of linear equa-
tions directly from problem descriptions?

Q3 How good is GPT-3 at creatively generating valid prob-
lems?

One reason to explore GPT-3’s ability to classify prob-
lems (Q1) is that this is actually one of the key instructional
methods that math educators use to help students approach
the solution of MWPs (van Garderen 2008). Our investiga-
tion of GPT-3’s ability to extract the system of equations cor-
rectly from the MWP description (Q2) is motivated by the
fact that there already exist symbolic mathematical solvers
such as WolframAlpha (Research 2009) that can not only
solve the extracted equations but can also show the step by
step process by which the equations can be solved. How-
ever, as of today, such tools are generally far from capable
of extracting the equations to solve an arbitrary word prob-
lem. If a system like GPT-3 turns out to be good at extracting
the correct equations from a MWP, then it can be connected
with a tool such as WolframAlpha in a pipeline that allows
the correct answer for the problem to be worked out and ex-
plained in a step-by-step manner. Another related task that
could be explored in this context is that of explaining how
the equations are obtained given the MWP textual descrip-
tion. We believe this is a much more challenging task and
defer the exploration of this question to future work. Finally,
we explore GPT-3’s ability to generate new word problems
(Q3) because this could be helpful in auto-generating a large
bank of questions for students to learn from or be assessed
on.

We created several datasets based on 200 questions ob-
tained by scraping the web for such problems (these datasets
are made publicly available for the benefit of other re-
searchers, online at https://github.com/anrgusc/MWP2L).

‘We present a number of experiments and quantitative results
addressing each of these three questions. Concerning Q1,
we consider five themes (see Table 1), and find that GPT-3
classifies problems with high accuracy for every theme but
one. Concerning Q2, we adopted zero-shot, one-shot, and
few-shot learning, as well as the fine-tuning method, to de-
termine if the model learns from additional examples and
which one is optimal for our goal. Since OpenAl develop-
ers have found in their research that the number of examples
given in the prompt affects the model’s performance on the
same task (Brown et al. 2020), we hypothesized that, given
more examples for it to learn from, the model would perform
better at equation extraction. Our results confirm that the
more examples provided, the better it performs. In general,
fine-tuned model outperforms the original GPT-3; while for
few-shot learning, three-shot ; two-shot ; one-shot ; zero-
shot. Overall, the fine-tuned model achieved 80% accuracy
on the testing set covering all themes. As for Q3, i.e., prob-
lem generation, we find that GPT-3 is effective at creating
new questions with substituted numbers and/or subjects, but
it has difficulty when it is required to write questions about
a different topic.

Related Work
Prior Applications of NLP to MWP

An Al-based natural language question-answering system
for MWPs was first proposed in 1964 (Bobrow 1964). Early
stage models which simulate human understanding of this
type of question rely heavily on operation rules, a pre-
designed database, or a comprehensive knowledge base to
obtain a desirable success rate in restricted domains, with
a predictable lack of ability to deal with out-of-scope in-
puts (Mukherjee and Garain 2008). Researchers then made
attempts to create a more scalable framework. With well-
designed categories and corresponding templates for equa-
tion solutions, ontology can be used to correctly map prob-
lems to their belonging class (Morton and Qu 2013). How-
ever, the key element of categorizing problems has notice-
able complexity.

In recent years, researchers adopted supervised learning,
semantic parsing, as well as reasoning approaches in their
systems and gained remarkable answer correctness from var-
ious test sets (Kushman et al. 2014; Shi et al. 2015). Follow-
ing the rise of deep learning algorithms, the recurrent neural
network (RNN) was introduced to further improve models’
performance. An RNN-based sequence-to-sequence model
was developed to translate textual descriptions to mathemat-
ical expressions (Wang, Liu, and Shi 2017). Subsequent re-
search mainly focused on combining subsidiary tree struc-
tures to improve the performance of such a translator (Wang
et al. 2019; Liu et al. 2019). Even though the success of a
sequence-to-sequence network is no longer built on com-
plicated feature engineering, scientists have noticed its defi-
ciency in capturing relations between quantities. To remedy
this, an alternative graph-to-tree deep learning architecture,
with a graph encoder to relate quantities to attributes and
a tree decoder to form expressions, was proposed (Zhang
et al. 2020). To compensate existing models for the lack



of ability to take common-sense knowledge into account
while processing the problems, others have implemented a
novel sequence-to-tree network. The innovative knowledge
graph, extracted from an external knowledge base accord-
ing to key words within an MWP, is the key for the tree-
decoder to utilize global information (Wu et al. 2020). In
brief, hand-crafted features and elaborate systems are two
essential components in research projects regarding MWP
solutions; researchers had not yet been able to exclude them
both from their methodology, until the emergence of Trans-
former models.

Prior Applications of Transformers to MWP

Like humans building a knowledge system on all the events
they have encountered, a neural network gains comprehen-
sive problem-solving ability by learning from examples it
has seen. But RNN models are hard to be trained on large-
scaled data because of slow computation. Besides, evidence
show that they are solving the problems by matching pat-
terns in training data instead of learning and understand-
ing, resulting in overestimated performance (Patel, Bhat-
tamishra, and Goyal 2021). Thus, after “attention”, a mech-
anism to highlight most relevant parts in input, was used
to develop the faster learner, transformer, RNN models lost
their dominant place in natural language processing. Re-
garding MWP solving, Griffith et al. created multiple ver-
sions of transformer to output prefix, infix, and post-fix rep-
resentations of expressions. The post-fix model outstood
with absolute accuracy between 82.5% to 100% on four dif-
ferent test sets. In fact, pre-processing procedures boost ac-
curacy by up to 11% (Griffith and Kalita 2021). Kim et al.
modified the classic transformer architecture so as to apply
the operand-pointer mechanism, which helps model to rec-
ognize relations between entities (Kim et al. 2020). Feature-
engineering-based or architecture-design-based models are
accurate and effective on a number of test sets, but their abil-
ity fail to extend to a larger subset of MWP, which means
re-engineering is in demand whenever researchers want to
expand the scope.

Top tech companies have invested significant amount of
resources in building pre-trained transformers during these
years, most advanced model would usually be replaced by
a even larger architecture in a year or so. Besides an in-
creased size constructed by more layers and attention heads,
newer model are often trained on an expanded dataset. One
earlier model succeeded in a wide range of NLP tasks is
Google’s product, BERT. A recent assessment shows that,
given a dataset containing MWP with simple arithmetic,
BERT reached almost 80% correctness in converting the
problem to expression (Tan et al. 2021). The most intrigu-
ing finding for us is that this achievement required no com-
plementary configurations. At the time we conduct research
about language models, BERT is no longer the most sophis-
ticated transformer. Serving as the latest pre-trained trans-
former open to the public, the complete model of GPT-3
beats its predecessors with 96 layers and 96 attention heads
in each layer. It’s trained on more than 400 billion high qual-
ity tokens (Brown et al. 2020), and the size of word em-
beddings is increased by a factor of 8 compared to GPT-

2. Therefore, we assess GPT-3’s capability in MWP under-
standing to see if it is positively related to the model’s com-
plexity. Following the prior work on pre-trained language
model, all completions of tasks are independent from ma-
nipulation of input data or modification of network structure.
That is, we demand the model to create solution equations
using problems in their original form and spend minimal ef-
fort in prompt engineering. We are able to confirm its capa-
bility with these ordinary settings.

Scope and Problem Formulations

Architecture for an Al-based Tutor for Word
Problems

An intelligent tutoring system for MWP could be expected
to 1) identify the type of problem, 2) output step-by-step in-
structions, 3) extract the correct system of linear equations,
4) successfully solve the equations, and 5) generate similar
problems for users to practice. This paper’s primary focus
is on part 3 (see Q2 below), along with some attention on
parts 1 (see QI below) and 5 (see Q3 below). We excluded
part 4 from this project because there are existing online re-
sources such as WolframAlpha that can solve a given system
of equations correctly, and we leave part 2 to future work as
a more challenging task.

Q1. Categorizing Word Problems

Based on a manual review of the problems in our dataset,
we grouped all word problems pertaining to two linear
equations in two variables into five different categories: a)
sum and difference (S&D), b) item and property (I&P), ¢)
perimeter of rectangles (POR), d) motion (MO), and e) mix-
ture (MI); an example of each category is provided in Ta-
ble 1. We expect the model to output the name of one group
given the word problem’s text as input, and assess its classi-
fication ability accordingly.

Q2. Extracting Equations

Given a word problem, the task for GPT-3 is to extract two
linear equations that can be used to derive the correct answer.
We standardize on the variables x and y to simplify the task.
Together with problem description (and additional examples
for one-shot and few-shot learning), we offer instructions at
the beginning of the prompt to make sure the model knows
what to do and what are the symbols to use. In Table 2, we
show an illustration of expected and unacceptable answers
for a given question. Accuracy is obtained by comparing the
right answer with generated text.

Q3. Generating Word Problems

Various topics or subjects appeared in the word problems in
our datasets, including moving objects, liquids, household
items, money, numbers, weights, geometry, and rectangular
objects. We tested GPT-3’s creativity by giving one example
and asking it to write a similar one (within or cross topic). In
Table 3, we give one example of within-topic generation and
one from cross-topic generation. One thing to notice is that
outcome of a cross-topic generation is still expected to fall



Sum and | The sum of half of a number, x, and another
Difference number, y, is -28. The difference of x and y
(S&D) is 7. Find x and y.
Item and | Three apples and four bananas cost $4.85.
Property Three apples and ten bananas cost $8.75.
(I&P) Find the cost of an apple.
Perimeter The length of a rectangle is 3 cm less than
of Rectan- | double the width, and the perimeter is 53
gle (PoR) cm. Find its dimensions.
Joey and Natasha start from the same point
Motion and walk in opposite directions. Joey walks
(MO) 4 km/h faster than Natasha. After 2 hours,
they are 31 kilometers apart. How fast did
each walk?
Twelve gallons of a 31% acid mixture is
Mixture obtained by mixing a 23% solution with a
(MI) 48% solution. How much of each must be
used?

Table 1: Instance problem from each category.

How many gallons of a 20% antifreeze
Problem solution and a 10% antifreeze solution
must be mixed to obtain 40 gallons of a
16% antifreeze solution?
Valid Re- % fo () 1 N
sponse 0.2%x+0.1*y=0.16*(x+y);x+y=40
Invalid Re- | 20x+10y=16*40 (only one equation is
sponse derived)
Invalid Re- | 20x+10(40-x)=16(40) (failed to use re-
sponse quired variable y)
Invalid Re- | 2¥x+1%*y=40;0.2%x+0.1*y=0.16 (incor-
sponse rect interpretation)

Table 2: Extraction task example.

under the same category. We don’t consider cross-category
generation in this project.

Experimental Methodology
Dataset

We prepared datasets of six different sizes to meet the grow-
ing needs of the project: 20 question (L20), 30 questions
(L30), 50 questions (L50), 100 questions (L100), 200 ques-
tions (L200), and 1000 questions (I.1000). These are sum-
marized in Table 4. L100 is expanded from L20 for test-
ing; L1000 is constructed from L200 in the same manner for
fine-tuning. By “expanded from A” we mean each problem-
answer pair in set A is used to make four copies with dis-
tinct combination of numbers. Our Python script read in one
pair of problem and answer at a time and randomly gener-
ated new number for every original value based on data type

roblem The larger of two numbers is 10 more than
piven in twice the smaller. If the smaller is sub-
g tracted from the larger, the result is 26. Find
prompt
the numbers.
::;ltlilcm' The larger of two numbers is 15 more than
eII’ler- twice the smaller. If the smaller is sub-
g L tracted from the larger, the result is 33. Find
ation
the numbers.
outcome
:50?:' The larger of two angles is 10 more than
elr)ler- twice the smaller. If the smaller is sub-
;gl tion tracted from the larger, the result is 26. Find
the angles.
outcome

Table 3: Problem generation.

expanded | # of questions | # of questions
from from web from GPT-3

L20 N/A 20 -

L30 N/A 30 -

L50 N/A 30 20

L100 L20 20 -

L200 N/A 200 -

L1000 | L200 200 -

Table 4: Datasets.

(float or integer). We recorded all existing combinations of
numerical values and added a new question to our dataset
only if it has a distinct sequence of numbers and relations.
This ensures that no two questions in the larger dataset are
identical. Moreover, a “+ 0.7” range was used for float gen-
eration and a “#£ 2” range was used for getting random in-
tegers. Zeros were allowed, but negative values were not ac-
cepted. Every set has its specific usage as discussed below.
There is no intersection between any training sets and test
sets, thus we properly avoided data contamination. More-
over, problems in L20, L50, L100, L200, and L1000 have
an equal distribution of the five themes.

For Q1

We asked GPT-3 to classify every question within the L50
dataset. Each query was formulated as a multiple choice
problem. One instance was provided at the beginning, fol-
lowed by the question: “Which type of question does the
above one belong to?” and the five categories were given
below as the only options in a multiple choice format.

For Q2

Our project began with the L30 dataset. It was split into
training, cross-validation (cv), and testing set with a ratio
of 5:12:13.



Prompt for zero-shot learning was composed of a two-
sentence instruction: “Extract a system of two linear equa-
tions in terms of x and y from the question. Separate
the equations with semicolon.\n” followed by the prob-
lem statement. Zero-shot learning was performed only once
on the entire dataset as it needs no separate training/cross-
validation process.

Few-shot learning methods require us to feed in exam-
ples. Their prompts shared a different beginning: “Extract a
system of two linear equations in terms of x and y from the
question. Separate the equations with semicolon like given
in the example:\n”, followed by numbered example(s).

We performed K-shot learning, for K = 1 -5 (e,
one-shot, two-shot, up to five-shot learning) on the cross-
validation (cv) set with all possible combinations of K train-
ing examples possible from the 5 training examples. Among
all of them, those resulted in the highest accuracy with re-
spect to learning method were picked out and used on the
testing set to ensure that our reported extraction accuracy
would be a fair representation of the model’s performance.

Another embedded variable that we can manipulate and
should take into account is the temperature of the GPT-3
model. Its value decides how much randomness is involved
in the model’s generation of response. A lower value of tem-
perature indicates that the responses would be more deter-
ministic, otherwise they are more random and likely to be
changed in another run. Taking into account its impact on
text completion, we let the model experience the same pro-
cedures five times with temperature 0.1, 0.3, 0.5, 0.7, and
0.9 to explore whether a specific value is the best fit for our
task!.

To find the upper limit of the model, we further introduced
fine-tuning into our research. OpenAl recommends training
the model on at least 500 instances, so we created L1000 as
previously described. OpenAl allows users to further fine-
tune a previously fine-tuned model and will preserve models
at each training stage. We further divided the process into
three stages. We fed in 100 examples during the first run,
then another 400, and finally the rest of 500 questions. All
sample training sets have an equal number of questions from
each class. As for testing, L20 was used to record extraction
accuracy at each stage; L100 was used as well to compare
whether the results are representative. Having the same num-
ber of questions from each theme in these datasets allows us
to analyze the model’s performance by category at the same
time.

For Q3

In order to effectively create new questions, we provide one
example at the beginning of each query, followed by a one-
sentence instruction: “Given the above question, use differ-
ent values to write a similar question about {topic}.” The
placeholder “{topic}” was replaced by a specific topic sub-
ject during generation.

Regarding within-topic generation, three instances from
each group were randomly selected. Each was tested ten

"Unless otherwise specified, the completion tasks always use
0.3 as temperature.

times to compute successful generation rate. We report rates
by category using mean of means.

For cross-topics generation, we considered every reason-
able pair of categories and topics. We used one random ex-
ample from each pair, asked the model to generate ques-
tions belonging to a different combination for ten times, and
counted the number of successes. We report these values in
the Experimental Results section.

Experimental Results
Classification

GPT-3 achieved over 80% accuracy for all groups but the
“item and property” class. For the “mixture” and “perimeter
of rectangle” groups, it successfully recognized all the be-
longing questions (Table 5). One interesting finding is that
all ten questions belonging to “item and property” were clas-
sified as “mixture”, which in a way could be justified, as a
typical “item and property” concerns combinations of two
types of items.

Category Accuracy
Sum and Difference (S&D) 0.80

Item and Property (I&P) 0.00
Motion (MO) 0.90
Mixture (MI) 1.00
Perimeter of  Rectangle | 1.00
(POR)

Table 5: Classification accuracy.

Few-shot Learning

0.1 0.3 0.5 0.7 0.9
1-shot | 3)4) | 3) 3@ | @D 4
2 |22
2shot | (14) | (4 |04 | @4 :
G4y | GP
’ 4.5
(2,3.4)
(13.4)
(13.4) | 2.3.4) (1.2,4)
3'Sh0t (3,4,5) (1’3’5) (1’3’4) (27394) (2’3,5)
(13.5)
(12.3)
(1,23.4)
(1.23.5) (1245 (1245 (123.5)
dshot | "3'5) 2345 (15374 (23.45) (1.2.3.4)
(2.3.4.5)

Table 6: Examples with best performance on the cv set for
different temperature parameters from 0.1 to 0.9.



0.1 0.3 0.5 0.7 0.9

0-shot | 0.2308 | 0.1539 | 0.1539 | 0.3077 | 0.1539

1-shot | 0.3846 | 0.3846 | 0.5385 | 0.3077 | 0.4615

2-shot | 0.5385 | 0.5385 | 0.4615 | 0.6154 | 0.5385

3-shot | 0.6154 | 0.6923 | 0.5385 | 0.4615 | 0.3846

4-shot | 0.6154 | 0.6154 | 0.6154 | 0.6923 | 0.6923

S-shot | 0.6154 | 0.5833 | 0.6923 | 0.5385 | 0.5385

Table 7: Highest accuracy on test set.

Five examples in the training set are numbered from 1 to
5. After running all possible combinations of training exam-
ples on the cross-validation set, we picked out the prompts
that performed the best for each temperature, which are
shown in Table 6.

Using these prompts, we ran GPT-3 on the test set
and measured the corresponding success rates. We present
model’s best performance with respect to learning method
and temperature in Table 7. It is clear that two-shot, three-
shot, four-shot, and five-shot learning are comparable meth-
ods in most cases. Summarizing by learning methods,
zero-shot learning achieved 0.3077 with temperature 0.7,
one-shot achieved 0.5385 with temperature 0.5, two-shot
achieved 0.6154 with temperature 0.7, and the rest three
reached 0.6923 with different temperatures. In conclusion,
upper limit of GPT-3 as a few-shot learner is 0.6923 on this
testing set; there is no clear pattern for a relationship be-
tween temperature and extraction accuracy; and we would
expect lower limit to be lifted as more examples are pro-
vided to the model. One might notice success rate is in in-
verse proportion to temperature for three-shot learning, but
this is because we left the “prompt” variable uncontrolled
while picking out the best values. When we use the same
prompt and only manipulate the temperature, the trend van-
ished.

Fine-tuning

Model Accuracy

3-shot learning 0.40

Fine-tuned w/ 100 examples 0.75

Fine-tuned w/ 500 examples 0.75
Fine-tuned w/ 1000 examples 0.80

Table 8: Results from L20.

Our fine-tuned model was tested on L20 set at each stage.
The corresponding results are shown in Table 8.

Running on the 100 instances (L100), fine-tuned GPT-3
obtained an extraction accuracy of 78.00% while three-shot
learning achieved 48.00%, indicating that generally a fine-

tuned model exceeds few-shot learning by 30%-40% accu-
racy in extracting system of linear equations.

By Category

Model S&D I&P POR MO | MI
3-shot w/o | 0.5 0.7 0.2 0.0 |05
example

3-shot w/ | 0.2 0.7 0.4 04 | 0.7
example

5-shot w/ | 0.3 0.7 0.4 04 | 038
example

Table 9: Accuracy by category on L50.

Model S&D I&P POR MO | MI
3-shot 0.05 0.70 0.50 0.40 | 0.75
learning

Fine-tuned | 0.45 0.75 0.95 0.75 | 1.00
GPT-3

Table 10: Accuracy by category on L100.

We hypothesized that offering one or more examples
from the same category would enhance or at least stabilize
model’s performance on a group of problems. We used L50
and few-shot learning methods to investigate this hypothe-
sis. The results support the hypothesis for all but one cat-
egory, the “sum and difference” category (Table 9). Next,
we tested on the L100 dataset for more proof. We chose the
best-performed three-shot learning model (with one prob-
lem belonging to the “mixture” group and two from the
“item and property” group) to compare with our final ver-
sion of fine-tuned GPT-3 (Table 10). Consequently, we ob-
tained 0.75 and 0.70 accuracy, respectively, for those two
categories, while getting considerably lower success rates
for the other three. With the model fine-tuned on 1000 ex-
amples, all values increased. Four of the five groups yielded
acceptable rates of at least 75%.

We conclude that this transformer model struggles the
most with the “sum and difference” group, considering even
fine-tuning couldn’t boost the accuracy to above 50%. On
the contrary, it learns fast to deal with questions classified
to either “perimeter of rectangle”, “motion”, or “mixture”
group. Due to its constantly stable performance with respect
to the “item and property” category, we infer that the model
naturally has ability to work with this type of MWP but has
limited capability for improvement. Despite the unresolved
mystery of “sum and difference” group, in general, our re-
sults indicate that relevant same-group examples are helpful
as prompts in few-shot learning.



Simulated Question Generation

We set temperature to 0.7 in order to take advantage of
the model’s creativity in writing problems. GPT-3 was in-
structed to performed a zero-shot learning. Using a prompt
that contains one within-category example followed by
“given the above example, write a similar problem with dif-
ferent subjects and different numbers” obtained various gen-
eration accuracy. We accepted questions with at least one
substituted number or subject, but didn’t give credit if the
provided instance is returned without modification. By tak-
ing average of three success rates, the POR category resulted
in the highest value: 0.9310.14, while the MO category has
the lowest: 0.334+0.45 (Table 11).

S&D I1&P POR MO MI

avg | 043 0.60 0.93 0.33 0.70

sd 0.51 0.20 0.12 0.40 0.52

Table 11: Results of within-topic generation.

Category and topic Success rate on different topics
MI + liquids items: 0/10; money: 0/10

MI + items liquids: 8/10; money: 0/10

MI + money liquids: 0/10; items: 0/10

S&D + numbers geometry: 5/10; weights: 10/10

S&D + geometry numbers: 0/10; weights: 10/10
S&D + weights numbers: 0/10; geometry: 2/10
I&P + items money: 3/10

I&P + money items: 0/10

Table 12: Results of cross-topic generation.

Not all categories span multiple topics. Specifically, the
“motion” category concerns only object movements, and
problems in the “perimeter of rectangle” are all about rectan-
gular objects. Therefore, we were left with the rest three cat-
egories to explore cross-topics generation. Only a few pairs
appeared to have an acceptable rate above 70% (Table 12).

Discussion

Classification results suggests an alternative set of classes
needs to be proposed in order to improve GPT-3’s perfor-
mance on this task. Combining “item and property” and
“mixture” into a larger category could be a short-term so-
lution. However, for the long-term goal of creating a well-
functioning tutoring system, it has to be able to distinguish
these confusing problems.

Our experiment on extraction accuracy reached 80%
along with 1000 training problems. By reviewing results on
L100, we noticed that fine-tuned GPT-3 generally would fail
on the duplicates if it couldn’t get the original question right;

on the other hand, it hardly make mistakes on duplicates if it
succeeded on the original piece. In Table 13 we show a num-
ber of problems that our fine-tuned model had difficulty in
processing. One finding is that directly applying common-
sense knowledge to problem solving remains an issue even
though the transformer has seen millions of texts. Addition-
ally, inconsistency and random errors also exists in output
equations.

Pi High School ordered 40 science books. The next
week, the school ordered 30 algebra books. The bill

Q: for the first order was $360 greater than the bill for
the second order. The two bills together totaled $3960.
Find the price of an algebra book.

A: 40*x+430*y=3960;x+360=y

A boat traveled 24 miles downstream in 2 hours. The
Q: return trip took twice as long. What is the speed of the
boat in still water?

A: 2%(x+y)=24;2%(x-y)=24

The length of a rectangle is 1 cm more than six times
Q: the width. If the perimeter of the rectangle is 82 cm,
what are its dimensions?

A: 2¥x+2%y-82=1;x-1=6%y

In a two digit number. The units digit is thrice the tens
Q: digit. If 36 is added to the number, the digits inter-
change their place. Find the number.

A: x+y=10;3*x+y=36

Table 13: Invalid output.

As for problem generation, our simple prompt yielded sat-
isfying outcomes with certain categories. The bimodal dis-
tribution of results for cross-topics generation suggests that
there might exist better prompts to boost these lower val-
ues. We acknowledge that some topics are too broad, like
“items”, casting additional difficulty to the task. Prompt en-
gineering and design of classes are two paths for future
work.

Conclusions

This study has explored the usage of GPT-3 in three key
aspects of linear math word problem tutoring: classifying
problems, converting description to a system of two linear
equations, and generating similar problems using one given
example. Our study shows promising results for all three
problems, particularly the 80% success rate for extracting
systems of equations with fine-tuning suggests that it is prac-
tically useful for this purpose. In the future, we plan to ex-
plore prompts and techniques that can guide GPT-3 to ex-
plain how the answers are derived.
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