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Abstract—In the context of evolving smart cities and au-
tonomous transportation systems, Vehicular Ad-hoc Networks
(VANETs) and the Internet of Vehicles (IoV) are growing in
significance. Vehicles are becoming more than just a means of
transportation; they are collecting, processing, and transmitting
massive amounts of data to make driving safer and more
convenient. However, this advancement ushers in complex issues
concerning the centralized structure of traditional vehicular
networks and the privacy and security concerns around vehicular
data. This paper offers a novel, game-theoretic network archi-
tecture to address these challenges. Our approach decentralizes
data collection through distributed servers across the network,
aggregating vehicular data into spatio-temporal maps via se-
cure multi-party computation (SMPC). This strategy effectively
reduces the chances of adversaries reconstructing a vehicle’s
complete path, increasing privacy. We also introduce an economic
model grounded in game theory that incentivizes vehicle owners
to participate in the network, balancing the owners’ privacy
concerns with the monetary benefits of data sharing. This
model aims to maximize the data consumer’s utility from the
gathered sensor data by determining the most suitable payment
to participating vehicles, the frequency in which these vehicles
share their data, and the total number of servers in the network.
We explore the interdependencies among these parameters and
present our findings accordingly. To define meaningful utility and
loss functions for our study, we utilize a real dataset of vehicular
movement traces.

Index Terms—vehicular networks, game theory, secure multi-
party computation, private data sharing

I. INTRODUCTION

As we move towards a future where smart cities and au-
tonomous transportation systems are gaining momentum, the
role of Vehicular Ad-hoc Networks (VANETs) and the Internet
of Vehicles (IoV) becomes increasingly significant [1]. In this
rapidly evolving landscape, vehicles are evolving from being
a means of transportation into key parts of a large, intercon-
nected network [2]. Entities like traffic management systems,
autonomous vehicles, and infotainment service providers,
known as data consumers, use this shared data to improve
their services and operations. For example, traffic management
systems can use real-time data to manage congestion, enhance
route planning, and decrease travel times [3]. Autonomous
vehicles can leverage this shared data for improved decision-
making, leading to safer and more efficient operations [4].
Infotainment services can offer personalized content based on
user preferences and location data [5]. Looking ahead, private

data sharing in VANETs is set to offer a growing number
of applications. However, this shift in the transportation land-
scape also brings with it a variety of complex challenges that
require careful examination and innovative solutions.

The centralized nature of traditional vehicular network
architecture, in particular, poses a significant concern. Central
servers bear the brunt of increasing traffic loads and any failure
can lead to substantial disruption [6], making the system
vulnerable. This necessitates a shift towards decentralized
network management and distributed storage solutions for a
more resilient, scalable, and efficient IoV [7].

Simultaneously, the increasing network complexity and the
sensitive nature of vehicular data raise critical questions about
privacy and security [6, 8, 9]. The indiscriminate sharing of
vehicular data, such as vehicle locations and sensor readings,
could lead to severe privacy violations and potential mis-
use [9, 10]. Despite the growing body of research focused
on secure communication and privacy protection in vehicular
networks [6, 10, 11, 12, 13], there remain critical gaps in
addressing these concerns while simultaneously incentivizing
users to participate in data sharing.

This paper proposes a novel, game-theoretic network archi-
tecture to address these challenges. Our approach decentralizes
the data collection process by introducing distributed servers
across the network. Vehicles would periodically send their
data to one of these servers at random, where the servers
would then aggregate the data into spatio-temporal maps using
secure multi-party computation (SMPC) [14]. The aggregated
data would then be forwarded to a central server for further
analysis by the data consumer. This scheme effectively reduces
the likelihood of an adversary being able to reconstruct the
complete path of a vehicle, even if they manage to intercept
some of the individual data samples.

The application of this approach involves an economic
model inspired by the Stackelberg competition [15], a con-
cept in game theory, wherein the data consumer and the
vehicle owners are the key players. In this game, the data
consumer assumes the role of the leader, making the first
move by defining the number of servers in the network, the
compensation provided to the participating vehicles, and the
frequency with which these vehicles share their data. The
vehicle owners follow by evaluating the terms set by the data
consumer, and decide whether or not to participate in the
data provision based on their privacy concerns and potential



monetary gains from data sharing. This model ensures that
the servers’ operational costs are managed and also aims to
maximize the data consumer’s utility from the gathered sensor
data.

We also propose that the agreements between the vehi-
cles, servers, and the data consumer be made autonomous,
transparent, and trustworthy through the use of blockchain-
based smart contracts. These contracts encourage participation
and maintain the system’s integrity by tracking individual
contributions and handling payments according to a predefined
structure [16]. In addition, they also enforce an audit and
verification process to prevent false data submissions, thereby
ensuring the reliability and credibility of the shared data [13].

The remainder of this paper is organized as follows: Sec-
tion II provides a review of the related work. Section III out-
lines our proposed network. Section IV explains the economic
modelling equations used. Section V presents the results of our
optimization and sensitivity analysis. Finally, Section VI con-
cludes the paper and proposes directions for future research.

II. RELATED WORK

A. Private Data Sharing

The concept of data sharing in vehicular networks has been
explored in various studies, each proposing unique solutions
to address the challenges of privacy, security, and efficiency.

Several studies have proposed different methods to enhance
data privacy and security in vehicular networks. Kaiser et
al. [17] proposed an Open Vehicle Data Platform that uses
Blockchain technology to ensure the privacy of vehicle own-
ers and drivers during the exchange of vehicle and driving
data. Kong et al. [18] proposed an efficient and location
privacy-preserving sensory data sharing scheme with collision
resistance in IoV. Their scheme uses the modified Paillier
Cryptosystem to achieve location privacy-preserving multi-
dimensional sensory data aggregation. Fan et al. [19] proposed
a cloud-based mutual authentication protocol aiming at ensur-
ing efficient privacy preserving in IoV system.

A few studies have proposed incentive mechanisms to
encourage data sharing. Zhang and Xu [20] proposed a mech-
anism that combines certificateless message authentication
and blockchain incentives to provide anonymity and non-
repudiation for traffic-related message reporters. Yeh et al. [21]
proposed a fair and privacy-preserving data query system
for vehicle networks based on blockchain technology. Their
scheme provides features of sustainable data accessibility
and a large amount of data storage and also provides an
incentive mechanism to encourage users to share their traffic
information.

B. Game Theory

Game theory, though not extensively prevalent, has found
niche applications within the realm of vehicular networks,
catering to specific use cases and scenarios. One such applica-
tion is in the field of data security; Gupta et al. [22] proposed
a blockchain-enabled game theory-based authentication mech-
anism to secure Internet of Vehicles (IoV) settings.

Another application of game theory in vehicular networks is
in the area of computation offloading. Liwang et al. [23] devel-
oped an opportunistic Vehicle-to-Vehicle (V2V) computation
offloading scheme based on game theory. They formulated
the computation offloading scheme and pricing strategy as a
Stackelberg game, taking into account various factors such
as vehicular mobility models, V2V contact durations, com-
putational capabilities, channel conditions, and service costs.
Similarly, Hassija et al. [24] used a game theoretic approach to
map service providers and consumers for performing offload-
ing services in a cost-optimal way in V2V communication.

In the realm of vehicular networks, the application of
game theory has been primarily focused on areas such as
data security, computation offloading, and resource allocation.
However, our research diverges from these established paths by
leveraging the Stackelberg game theory to incentivize private
data sharing within the network. While previous studies, such
as that of Liwang et al. [23], have also utilized the Stackel-
berg game, our work uniquely applies it to the challenge of
balancing data sharing incentives with privacy preservation.
Furthermore, the introduction of monetary incentives in our
model represents a novel approach in the field, distinguishing
our research from existing literature.

C. Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) is a protocol that
enables distributed parties to jointly compute an arbitrary
functionality without revealing their own private inputs and
outputs [14]. SMPC has been used for various security appli-
cations, including privacy-preserving machine learning with
multiple sources [25], private set operations [26], and genome
sequence comparison for secure genomic computation [27].
SMPC is commonly constructed with cryptographic schemes
such as homomorphic encryption, which is an encryption
technique that allows applying computations on the encrypted
data without having to decrypt it [28].

In the realm of vehicular networks, Song et al. [29] proposed
an anonymous authentication scheme based on SMPC to solve
securrity and privacy problems for VANETs. Raja et al. [30]
combined blockchain technology with AI to overcome secu-
rity challenges in IoV, speed up transaction verification, and
optimizes energy consumption. The authors of [31] proposed
a cooperative control strategy involving SMPC that performs
computations while increasing resillience towards latency and
adversaries. Gupta et al. [32] have combined SMPC with
homomorphic encryption and proposed a scheme that provides
real-time location tracking using GPS without divulging the
actual location of the user.

Our research builds upon these existing works by proposing
the use of SMPC for secure data aggregation between servers
within vehicular networks. While previous studies have fo-
cused on applications such as anonymous authentication and
location tracking, our work introduces a novel application of
SMPC for preserving privacy during data aggregation. There-
fore, our research not only extends the application of SMPC



Fig. 1: Network Flow Diagram

in vehicular networks but also contributes a unique solution
to the challenge of privacy-preserving data aggregation.

III. PROBLEM FORMULATION

Our network architecture is made up of three key compo-
nents: the vehicles providing the data, the independent servers
processing the data, and the data consumer collecting the
processed data. As depicted in Fig 1, vehicles periodically
transmit their sensor data, which could include location co-
ordinates or specific measurement readings, to one randomly
selected server at a time. This approach ensures that no single
server has access to the full raw data of any one vehicle,
enhancing the privacy and security of the data.

The servers employ Secure Multi-Party Computation
(SMPC) to aggregate the sensor data into spatio-temporal
maps. Generally speaking, SMPC is a protocol that allows
multiple parties to jointly compute a function over their inputs
while keeping those inputs private. In our context, it ensures
that the raw sensor data from the vehicles sent to one server
is not exposed to any other servers or external entities.

Once the data is aggregated into spatio-temporal maps on
each server, it is forwarded to a central server for further
analysis. This process allows us to extract valuable insights
from the data while preserving the privacy of the individual
vehicles’ raw data.

A. Vehicles

The vehicles share private, signed information such as
location data to a random receiving server. In exchange, the
vehicles are compensated based on the amount of data they
transmit. However, the higher the volume of data transmitted,
the greater the privacy risk, given that the information sent
includes time-stamped location data.

We model the utility of the vehicle by:

c1 · fd − L(fd, s) (1)

where c1 is the payment provided to the vehicle, fd is
the frequency of data transmission, and s is the number of
servers. We assume that all vehicles share data at the same
frequency fd. L(fd, s) is a function that says the privacy loss
increases with fd and decreases with s. This loss function will
be explained in greater detail in Section IV-B.

Because of this trade-off, not every vehicle would be willing
to contribute its data to the network; the utility gained would
have to exceed the perceived privacy loss of sharing its data
for the vehicle to have positive utility and therefore agree to
contribute its data.

This will create a supply curve because as c1 increases,
more vehicles would be willing to provide data for a given
fd. Let’s model a function v(c1, fd, s, V ) as the number of
vehicles that provide data to the network when the vehicles
are paid c1, each vehicle sends data at a frequency of fd, there
are s servers, and a maximum of V vehicles registered in the
system.

To find v(c1, fd, s, V ), we consider that the privacy sensi-
tivity of each individual owning a vehicle can be modeled by a
random variable ei, with a given cdf Fei(·). For an individual
with sensitivity ei, the utility due to privacy is given as:

wi = c1 · fd − ei · L(fd, s) (2)

If wi > 0, the individual would provide their data. The prob-
ability that this happens depends on ei. Using equation (2), we
have that for positive wi values, the probability of an individual
agreeing to share their data would be:

Pr(wi > 0) = Pr

(
ei <

c1 · fd
L(fd, s)

)
= Fei

(
c1 · fd
L(fd, s)

)
(3)

For our simulations, we use a log-normal distribution for
Fei(·). If we have V total vehicles in the system, the expected
number of vehicles that would participate in the network would
be:

v(c1, fd, s) = V · Fei

(
c1 · fd
L(fd, s)

)
(4)

= V · 1√
2 · π · σ2

· 1
c1·fd

L(fd,s)

· exp

−
(
ln

(
c1·fd

L(fd,s)

)
− µ

)2

2σ2

 (5)

B. Servers

We assume that each server in our network is responsible
for collecting and processing the data shared by the vehicles.
Each server incurs a cost proportional to the amount of data it
processes, in addition to a fixed maintenance or upkeep cost. In
our proposed framework, one or more third parties could be in
charge of server management. This keeps the data consumer
separate from server administration, enhancing user privacy
and trust. By distributing control, we make sure no single
entity can access all the raw data, reinforcing our dedication



to data privacy. The key assumption we make, however, is
that the data consumer shoulders the cost for the use of these
servers. The total cost incurred per server would be:

c2 · v(c1, fd, s, V ) · fd
s

+ c3 (6)

where c2 and c3 are the server computation and upkeep
costs respectively.

C. Data Consumer

The data consumer is the entity that provides the payments
to the vehicles and servers and receives the final aggregated
data. The data consumer’s total utility is therefore modeled as:

U(v(c1, fd, s), fd)

− (c2 · v(c1, fd, s, V ) · fd
s

+ c3)

− c1 · v(c1, fd, s, V ) · fd

(7)

Equation (7) represents the utility gained from the vehi-
cles’ data minus the total cost to run the servers and the
total payment made to the participating vehicles. This is
the profit equation that we will optimize in this paper. The
data consumer determines the compensation allocated to the
participating vehicles and servers, as well as the total number
of servers in the network. Once the data consumer establishes
the servers’ payments (c2 and c3), the optimization process
delivers the optimal values for vehicle compensation (c1),
server count (s), and data transmission frequency (fd) that
maximize the data consumer’s overall utility.

IV. ECONOMIC MODELLING

A. Data Consumer’s Utility Function

The data consumer’s utility gained from vehicle data can be
expressed as U(v(c1, fd, s), fd). It depends on the number of
vehicles providing data, which in turn depends on the payment
made to each vehicle for providing their data c1, the frequency
in which these vehicles are sharing their data fd, and the total
number of servers in the network s.

We model the data consumer’s utility in a given area
as an increasing function related to the number of vehicles
contributing data, with diminishing utility as that number
increases:

−1/(1 + a · exp(−1√
n
)) + 1 (8)

In equation (8), n is the number of vehicles contributing
data, and a is a variable parameter determining the limit to
which the utility function converges. When a increases, this
convergence tends towards 1. The specific value of a is less
significant as long as it is sufficiently large. If a becomes too
small, the function will converge to a lesser value. For our
demonstration, we choose a to be equal to 100.

To model this function, we used a dataset containing times-
tamped coordinates of 2927 taxis in Beijing over a 24-hour

Fig. 2: Plot of data consumer’s average utility as a function of
the number of vehicles and the frequency of data transmission

time period1. Since the dataset provides data points for every
minute, the fd term will be described in units of samples per
minute.

Our objective is to discern the data consumer’s average
utility if they had a sub-sample of this dataset. We begin by
sectioning the entire dataset into spatio-temporal grids. Within
each grid, we use the number of vehicle samples along with
equation (8) to calculate the utility. We then compute the
average utility across all grids to determine the average utility
of the dataset’s region. We repeat this process with various V
and fd values to create a 3D plot as shown in Fig. 2. This
plot illustrates how the average utility for the data consumer
changes as the number of vehicles and the frequency of data
transmission increase. Next, we use the curve fitting function
shown in equation (9) to establish an equation that expresses
the utility gained from the vehicles’ data U(v(c1, fd, s), fd).

U(v(c1, fd, s), fd) = α · (1− exp(−β · (v · fd))) (9)

After curve fitting, our α and β constants came out to be
0.99 and 0.45 respectively. We show how sensitive our results
are to these parameters in Section V.

B. Loss Function

The vehicle’s privacy loss function, denoted as L(fd, s),
depends on the frequency in which the vehicle is sharing
its data and the number of servers it is sharing its data to.
We provide a model to quantify this loss in terms of how
accurately a potential adversary can reconstruct a vehicle’s
driving path given a certain number of samples. Given a set
of locations on a vehicle’s path, an adversary’s best estimate
of the path traversed by the vehicle would be the shortest
path routes between each pair of those points. Our measure of

1This dataset was obtained from University of Southern California’s Au-
tonomous Networks Research Group (https://anrg.usc.edu/www/downloads/)



Fig. 3: Paths with Different Number of Data Points

privacy would be how different this reconstructed path would
be compared to the vehicle’s original path.

Figure 3 presents an example of an original trip represented
in blue, along with two sub-trips, shown in green, that contain
a subset of the data points from the original trip. It is evident
that paths are less similar when fewer data points are available.
Consequently, paths with less similarity offer greater privacy
to the user.

First, we find how much privacy is lost to one server that
receives fd/s samples per minute from a given vehicle. To
do this, we measure our privacy metric empirically using our
dataset. We sample one trip from the dataset, which will have
a fd of one sample per minute, and compare that same trip to
subtrips with less frequent samples, ranging from fd = 1/2 to
fd = 1/10. We use the similarity library within the TensorBay
package [33] to determine the path similarity between our
initial trip and all subtrips. This library utilizes the Fréchet
distance [34] as a measure of comparing two curves. Finally,
we repeat this process for all the vehicles in the dataset to find
the average similarity scores as the value of fd changes.

Fig. 4: Privacy Loss as a function of the frequency of data
transmission

Fig 4 shows that when the frequency of data sharing
increases, it becomes easier for a potential adversary to re-
construct a user’s path, leading to higher privacy loss. We can
also see the curve-fitted equation that gives us the privacy loss
as a function of fd

s . The loss function takes values from 0 to
1, with 1 being 100% privacy loss. However, the network’s
privacy is also influenced by the total number of servers and
the frequency of data transmission as well. The total loss
equation is therefore:

L(fd, s) =1− exp

(
−12.447 · fd

s

)
− exp (−p · fd)

− exp
(
−q

s

) (10)

Equation (10) contains three terms: privacy loss from fd
s ,

fd, and s. Each term independently influences the overall loss
function. The first term represents the privacy loss per server,
the second term indicates that the loss function approaches 1
as fd approaches infinity, and the third term confirms that the
loss function tends to zero when s approaches infinity. The
constants p and q are selected to ensure that both the fd and s
variables contribute adequately. Although it would have been
possible to set both constants as equal, we opted to weigh the
influence of adding another server to the privacy loss more
heavily than that of adding another sample per minute, in the
context of our optimization. In demonstrating this, we have
set p and q at 0.1 and 10 respectively.

V. RESULTS

A. Optimization
The optimization problem for the data consumer involves

selecting the optimal values for the number of servers (s),
frequency of data transmission (fd), and the payment provided
to the vehicle (c1) in order to maximize the total profit, as
expressed in equation (7). Each of these three parameters is
crucial to optimize, as they each involve specific trade-offs.
Increasing the number of servers enhances overall privacy but
also raises the network’s operating costs. A higher fd yields
greater utility for the data consumer, but may deter vehicles
from sharing their data due to privacy concerns. Lastly, raising
c1 could attract more vehicles to participate in the network,
thus increasing utility, but this also incurs higher costs for the
data consumer.

To optimize equation (7), we must first choose acceptable
values for the server computation cost (c2), the server upkeep
cost (c3), the total number of vehicles V , and the mean and
variance of our log-normal distribution function. We set the
number of total vehicles to be 2928, which is the number of
independent vehicles in our dataset. We use a mean of 0 and
standard deviation of 0.5 for our log-normal distribution to
have a positive-shaped bell curve.

The following set of equations guides our choices for c2
and c3. As depicted in equation (11a), c3 should be on
the order of the payment distributed to each vehicle per
server. Equation (11b) emphasizes that c3 must stay below
the computational expense the server bears for each vehicle
that shares data. Lastly, equation (11c) suggests that c2 should
be less than the reciprocal of the total number of vehicles
in the network. It is important for our chosen values to
comply with these equations, as the relative values of the
parameters are more significant than their absolute values. For
this reason, we choose 1e-6 and 1e-4 for c2 and c3 respectively
and perform sensitivity analysis on these constants in the
subsequent subsection.



Fig. 5: Sensitivity Analysis for c2, c3, and β respectively.

c3 ∼ c1 ·
V

s
(11a)

c3 < c2 ·
V

s
(11b)

c2 <
1

V
(11c)

We used the scipy.optimize package [35] to solve our opti-
mization problem. We observe from Table I that the optimized
values are 3.57e-6 paid to the vehicle, 7.31 samples per minute
shared to the servers by the vehicles, and 15.12 total servers.

TABLE I: Optimization Results

Parameter c1 fd (samples/min) servers
Optimized Value 3.57e-6 7.31 15.12

B. Sensitivity Analysis

In this section, we discuss the sensitivity analysis performed
to determine the effects of varying specific constants on our
optimization results. The variables analyzed include the server
computation cost (c2), server upkeep cost (c3), total number
of vehicles (V ), standard deviation of individuals’ privacy
sensitivity, and the constant β found in equation (9). We’re
particularly interested in how these changes influence the three
optimized parameters: the vehicle payment (c1), frequency of
data transmission (fd), and the number of servers (s).

Altering the total number of vehicles (V ) does not consid-
erably affect c1, fd, or s. However, it impacts the number of
vehicles participating in the network, as these are a subset of
the total vehicles. Therefore, an increase in the total number
of vehicles leads to more vehicles participating in the network.

When we increase the standard deviation of individuals’
privacy sensitivity, we observe a slight increase in the number
of servers required, a slight increase in the frequency of
data sharing, and a decrease in the vehicle payment. This
result aligns with the understanding that a larger variability
in privacy sensitivity necessitates more servers and reduced
data sharing frequency to enhance privacy. Consequently, the
vehicles demand less payment due to the lowered privacy risk
posed by the network.

Figure 5 illustrates the sensitivity of our results when
parameters c2, c3, and β are adjusted. This figure shows that
the various parameters are largely robust to values of c2, c3,
and β, with the exception of particular values that show sharp
changes that could be attributed to numerical instability of
the non-linear optimization. However, even where these sharp
changes occur, we observe that fd and s exhibit the same
trends, increasing and decreasing in unison. Conversely, c1
behaves differently, showing a sharp increase whenever fd
and s experience drops. This particular surge is in line with
expectations since the model needs to be balanced due to
sudden drops in fd and s. The key insight from these graphs is
that the absolute values of these parameters are less significant
than their values in relation to the other parameters.

VI. CONCLUSION

In this paper, we introduced a novel, game-theoretic,
privacy-preserving network architecture that incentivizes pri-
vate data sharing in VANETs. This approach decentralizes data
collection and integrates distributed servers across the net-
work, where vehicles would periodically share their data with
random servers that aggregate the data into spatio-temporal
maps using secure multi-party computation (SMPC). This
model increases user privacy by denying potential adversaries
the ability to reconstruct the complete path of a vehicle,
even if they manage to intercept some of the individual data
samples. This approach also introduces an economic model
that balances the drivers’ privacy concerns with the monetary
benefits of data sharing, while managing the operational costs
of the servers in the network. The model optimizes the overall
utility for the data consumer by determining the most suitable
payment to vehicles (c1), frequency of data sharing (fd), and
the number of servers (s) in the network.

For future development, we aim to improve our optimizer
by employing a hybrid of Neural Networks and Genetic
Algorithms, enhancing optimization stability and efficiency.
Concurrently, we plan to integrate tailored blockchain solu-
tions for our network through meticulous requirement anal-
ysis, hybrid blockchain adoption, and smart contract design.
These advancements seek to provide novel insights and bolster
security, trust, operational efficiency, and user empowerment
in IoV applications.
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