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Outline 

 Administrative Stuff 

 

 Topology Control in Sensor Networks 

 

 Localization in Sensor Networks with Testbed Experiments 

- Suvil 
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 No topology control: nodes 

transmit at max power levels 

•  High energy consumption 

•  High interference 

•  Low throughput  

Topology Control: Given a network connectivity graph, compute a 

subgraph with certain properties: connectivity, low interference etc. 

• No topology control: nodes 

transmit at min power levels 

•  Network may partition 

Why Topology Control? 
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Benefits 
•  Global connectivity 

•  Low energy consumption  

•  Low interference 

•  High throughput 

Problem 

• To find optimal transmission power levels using local information 

such that network connectivity is maintained. 

An Example 
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Challenges:  
 Is very high density deployment practical in 3D? 

 Do 2D algorithms readily extend to 3D? 

 Structural restrictions 

Applications: Structural Health Monitoring, Marine-life monitoring 

•  Under random deployment, node density required to ensure connectivity is 

prohibitively high in 3D! 

 Critical Transmission Radius: O( (log n/n)1/d) for a unit cube [0,1]d [Goel ’06] 

 

 Critical avg. node deg: 15 in 2D vs. 34 in 3D (for n=1000)  [Poduri, EmNet’06] 

 

•  Many 2D algorithms are not extensible to 3D (e.g. geographic routing) 

 

•  Very high complexity 

 

•  No ordering of nodes based on angular information in 3D 

3-Dimensional Networks 
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Can you think of a smart Strategy? 
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2D CBTC  
Global connectivity from local geometric constraints [Wattenhofer, Infocom ’01] 

[Li Li, PODC ’01, TON ’05] 
 

Assumptions 
 Maximum Power Graph G=(V, E) is connected  
 Assume receivers can determine direction of senders 

Main Result 
 
If every node adjusts its power level, such 
that there exists at least one neighbor at 
every 2∏/3 sector around itself, then 
network is connected 
 
 
• Complexity O(d log d), d = avg node deg 
• Not (efficiently) extensible to 3D 
 

2∏/3 

Cone-Based Topology Control 
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3D CBTC  [Bahramgiri, ICCCN’05, Wireless Networks ‘06] 
 

Basic Idea 

Each node increases its power level until there is at least one 

neighbor at every 3D cone of apex angle 2/3 around it 

 

Limitations 

- Assumes directional information 

- High time complexity – O(d3 log d) 

3D Topology Control 
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Reduce Complexity in 3D 

 Can you think of a smart strategy to do the power control 

in 3D with reduced complexity? 
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 Phase 1 
 

 Use Multi-Dimensional Scaling (MDS) to find relative location maps for 
each node’s neighbors when they use Pmax 

 

 

 Phase 2 
 

 Simplify the 3D problem 
 Orthographic Projections 

– Convert the 3D problem into similar problems in 2D 

 

 Solve the 2D problems using CBTC and infer about the 3D solution 

 

 Solve the 3D problem directly 

 Use Spherical Delaunay Triangulation (computational geometry tool)    

Our Approach 
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Classical MDS  

 Input: pairwise distances 

 Output: relative positions 

 

Example: (2D case)  

  Tom    Jack    Peter   Max 

Tom 

Jack 

Peter 

Max 

Classical MDS 

Phase I: Multi-Dimensional Scaling 
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Phase 2: Orthographic Projections 
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1.  Each node starts with minimum tx. power 

 

2.  For a given tx power, project the  neighbors 

on xy, yz, and zx 

 

3.  Run 2D CBTC on each plane  
 If any of the 3 planes do not satisfy the 

2∏/3 constraint, increase power to the 

next level 

 Else STOP, settle with current power 

 

4.  Go back to Step 2 unless Pmax is reached. 

Algorithm: 

Hope that by satisfying CBTC on 3 planes => non-empty 3D 

cones 

Phase 2: Orthographic Projections 
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Lemma 1: 

Consider the projections of a node ui’s 

neighbor on the three planes: xy, yz, 

and zx. 

 

If there exists at least one empty 

sector of angle  in any one of the 

planes, then there exists an infinite 

number of empty 3D cones with apex 

angle  around ui. 

Phase 2: Orthographic Projections 
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Does it preserve 

connectivity? 

Theoretically: NO 

Practically: YES 

The 3D cone can be empty even if 

all the 3 planes satisfy the  constraint  

 

Phase 2: Orthographic Projections 
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Given N points in 2D, a Voronoi diagram tessellates the plane 

into N convex polygons, such that any point within a polygon is 

closest to the site (given point) that lies in that polygon 
 

Voronoi Diagrams 
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Dual of Voronoi diagram 

Empty circumcircle property of DT  

Delaunay Triangulation 
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Spherical Delaunay Triangulation 

 When we do the DT on the surface of a sphere 

Spherical triangles, 

and spherical caps 
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Phase II: SDT 

 Construct a SDT by projecting the node locations on the 

surface of a sphere 
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Lemma 2 
If none of the spherical caps have a surface 

area greater than 2.7R2, the network is at 

least one-connected. O(d log d) 

1. Each node starts with minimum tx. Power 
 

2. For a given tx. power, project the neighbors on the spherical surface 
 

3. Construct Delaunay triangulation on the surface of the sphere 
 

4. Calculate the area of the (empty) spherical caps 
 

5. If any cap area is > 2.7 R2  

• Increase the power to next level; go to Step 2 

6. Else 

• Stop, settle down with current power level 

Algorithm: SDT 

Phase II: SDT 
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Spherical Delaunay Triangulation using Quickhull for 100 points 

randomly distributed on the surface of a sphere of radius 50 

Visualization of SDT in Matlab 
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Simulation Results 

 Maximum power graph vs. Graph after topology control 
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Simulation Results 

 Average node degree and how it scales with topology 

control 
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Simulation Results 

 Comparison of complexity 


